Average-Case Communication Complexity of Statistical Problems.

COLT(2021)

引用 2|浏览16
暂无评分
摘要
We study statistical problems, such as planted clique, its variants, and sparse principal component analysis in the context of average-case communication complexity. Our motivation is to understand the statistical-computational trade-offs in streaming, sketching, and query-based models. Communication complexity is the main tool for proving lower bounds in these models, yet many prior results do not hold in an average-case setting. We provide a general reduction method that preserves the input distribution for problems involving a random graph or matrix with planted structure. Then, we derive two-party and multi-party communication lower bounds for detecting or finding planted cliques, bipartite cliques, and related problems. As a consequence, we obtain new bounds on the query complexity in the edge-probe, vector-matrix-vector, matrix-vector, linear sketching, and $\mathbb{F}_2$-sketching models. Many of these results are nearly tight, and we use our techniques to provide simple proofs of some known lower bounds for the edge-probe model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络