3d Hybrid Imaging Based On Gravity Migration And Regularized Focusing Inversion To Predict The Poyang Basin Interface

GEOPHYSICS(2021)

引用 0|浏览3
暂无评分
摘要
Describing and understanding the basement relief of sedimentary basins is vital for oil and gas exploration. The traditional method to map an interface in each spatial direction is based on 3D modeling of gravity Bouguer anomalies with variable lateral and vertical density contrasts using a priori information derived from other types of geoscience data sets as constraints (e.g., well and/or seismic data). However, in the preexploration stage, vertical gravity gz, which is sometimes the only available geophysical data, is typically used to recover smooth density contrast distributions under a generic set of constraints. Apparently, the use of the gz component is not sufficient to producegeologically reasonable interpretations with high resolution. To address this, we have developed a novel process of hybrid inversion, combining gravity migration and inversion using the same gz data set, to distinguish the complicated interface between basement and sedimentary basin rocks from a full-space inverted density distribution volume. First, a 3D-migrated model delineating the basic sedimentary basin structure is derived using a focusing gravity iterative migration method, where a priori information is not necessary. Subsequently, under the framework of the regularized focusing conjugate inversion algorithm, a high-resolution density contrast model is inverted for delineation of the basement boundary by integrating the 3D-migrated density model as a priori in-formation. We examine the method using one synthetic example and a field data case, of which a transformed resolution density matrix is developed from logarithmic space to qualitatively evaluate the practical resolutions. The high resolution of the density distribution of the Cretaceous basement with a clear interface is achieved and verified by limited seismic data and strata markers in limited wells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要