The Effect Of Fluid Flow Shear Stress And Substrate Stiffness On Yes-Associated Protein (Yap) Activity And Osteogenesis In Murine Osteosarcoma Cells

CANCERS(2021)

引用 4|浏览9
暂无评分
摘要
Simple Summary Primary bone cancers like osteosarcoma (OS) are driven by bone cells that develop mutations, and behave in an uncontrolled manner. All bone cells, including defective ones, are sensitive to their physical environment. We tested the response of osteosarcoma cells, at the gene level, to two different kinds of mechanical stimulus, which are relevant to the tumor microenvironment. The first was fluid flowing over their surface, and the second was stiffness or rigidity of the surface beneath. In our study we found that fluid flow in particular has the ability to change the behavior of OS cancer cells, and could potentially be used to reduce their harmful effects. Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness-two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity-which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.
更多
查看译文
关键词
osteosarcoma, mechanobiology, osteogenesis, shear stress, substrate stiffness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要