An Mn-Doped Nicop Flower-Like Structure As A Highly Efficient Electrocatalyst For Hydrogen Evolution Reaction In Acidic And Alkaline Solutions With Long Duration

NANOSCALE(2021)

引用 48|浏览2
暂无评分
摘要
The exploration of efficient non-noble metal electrocatalysts for hydrogen evolution reaction has received considerable attention to replace commercial Pt catalyst. It is known that the cooperative coupling of appropriate non-noble metals exhibits excellent HER performance than a single component. Herein, an Mn-doped NiCoP flower-like electrocatalyst with self-assembled nanosheets on a nickel foam is synthesized via successive hydrothermal methods, followed by low temperature phosphidation. The as-synthesized Mn-NiCoP presents extraordinarily high catalytic activity and robust chemical stability towards the hydrogen evolution reaction in both acidic and alkaline electrolytes. Benefiting from the dual modulation of the morphology structure and chemical compositions, Mn-NiCoP/NF achieves a current density of 10 mA cm(-2) at a low overpotential of 37 mV for HER in a 0.5 M H2SO4 solution. Moreover, it only requires overpotentials of 67 mV and 142 mV to deliver current densities of 10 mA cm(-2) and 50 mA cm(-2) in a 1 M KOH solution, respectively. Remarkably, it holds enhanced stability in 1 M KOH, maintaining HER activity for at least 120 h with negligible overpotential decay. The highly efficient and stable Mn-NiCoP electrocatalyst is valuable in applications relevant to energy storage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要