Stochastic Optimal Feedforward-Feedback Control Determines Timing And Variability Of Arm Movements With Or Without Vision

PLOS COMPUTATIONAL BIOLOGY(2021)

引用 17|浏览3
暂无评分
摘要
Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.Author summary Stochastic optimal feedback control, which has been extensively used to model human motor control in the last two decades, proposes to compute an optimal motor command online based on an estimation of the current system state using sensory feedback. However, this modelling approach underestimates the role of motor plans to generate appropriate feedforward motor command before the movement starts, which is emphasized in conditions with large uncertainty about current limb state estimates such as when visual feedback is lacking. Here we propose a model combining stochastic feedforward and feedback control to address this issue. The new stochastic feedforward-feedback (SFFC) model considers effort and variance minimization as well as the effects of motor and sensory noise both on planning and execution of arm movements. By combining the feedforward and feedback aspects of stochastically optimal control in an elegant way, SFFC can predict the timing and variability of movements carried out with or without visual feedback, while previous models would fail in one or another aspect, or have to use ad hoc fixes.
更多
查看译文
关键词
arm movements,control,feedforward-feedback
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要