Temperature, Traveling, Slums, And Housing Drive Dengue Transmission In A Non-Endemic Metropolis

PLOS NEGLECTED TROPICAL DISEASES(2021)

引用 7|浏览0
暂无评分
摘要
Dengue is steadily increasing worldwide and expanding into higher latitudes. Current non-endemic areas are prone to become endemic soon. To improve understanding of dengue transmission in these settings, we assessed the spatiotemporal dynamics of the hitherto largest outbreak in the non-endemic metropolis of Buenos Aires, Argentina, based on detailed information on the 5,104 georeferenced cases registered during summer-autumn of 2016. The highly seasonal dengue transmission in Buenos Aires was modulated by temperature and triggered by imported cases coming from regions with ongoing outbreaks. However, local transmission was made possible and consolidated heterogeneously in the city due to housing and socioeconomic characteristics of the population, with 32.8% of autochthonous cases occurring in slums, which held only 6.4% of the city population. A hierarchical spatiotemporal model accounting for imperfect detection of cases showed that, outside slums, less-affluent neighborhoods of houses (vs. apartments) favored transmission. Global and local spatiotemporal point-pattern analyses demonstrated that most transmission occurred at or close to home. Additionally, based on these results, a point-pattern analysis was assessed for early identification of transmission foci during the outbreak while accounting for population spatial distribution. Altogether, our results reveal how social, physical, and biological processes shape dengue transmission in Buenos Aires and, likely, other non-endemic cities, and suggest multiple opportunities for control interventions.Author summary Dengue fever is mainly transmitted by a mosquito species that is highly urbanized, and lays eggs and develops mostly in artificial water containers. Dengue transmission is sustained year-round in most tropical regions of the world, but in many subtropical/temperate regions it occurs only in the warmest months. To improve understanding of dengue transmission in these regions, we analyzed one of the largest outbreaks in Buenos Aires city, a subtropical metropolis. Based on information on 5,104 georeferenced cases during summer-autumn 2016, we found that most transmission occurred in or near home, that slums had the highest risk of transmission, and that, outside slums, less-affluent neighborhoods of houses (vs. apartments) favored transmission. We showed that the cumulative effects of temperature over the previous few weeks set the temporal limits for transmission to occur, and that the outbreak was sparked by infected people arriving from regions with ongoing outbreaks. Additionally, we implemented a statistical method to identify transmission foci in real-time that improves targeting control interventions. Our results deepen the understanding of dengue transmission as a result of social, physical, and biological processes, and pose multiple opportunities for improving control of dengue and other mosquito-borne viruses such as Zika, chikungunya, and yellow fever.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要