Long-Lived Solid-State Optical Memory for High-Rate Quantum Repeaters

PHYSICAL REVIEW LETTERS(2021)

引用 31|浏览3
暂无评分
摘要
We argue that long optical storage times are required to establish entanglement at high rates over large distances using memory-based quantum repeaters. Triggered by this conclusion, we investigate the 795.325 nm3 H6 <-> 3H4 transition of Tm : Y3Ga5O12 (Tm:YGG). Most importantly, we find that the optical coherence time can reach 1.1 ms, and, using laser pulses, we demonstrate optical storage based on the atomic frequency comb protocol during up to 100 mu s as well as a memory decay time T,n of 13.1 mu s. Possibilities of how to narrow the gap between the measured value of T,n and its maximum of 275 mu s are discussed. In addition, we demonstrate multiplexed storage, including with feed-forward selection, shifting and filtering of spectral modes, as well as quantum state storage using members of nonclassical photon pairs. Our results show the potential of Tm:YGG for creating multiplexed quantum memories with long optical storage times, and open the path to repeater-based quantum networks with high entanglement distribution rates.
更多
查看译文
关键词
quantum,memory,long-lived,solid-state,high-rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要