On The Quantum And Classical Control Of Laser-Driven Isomerization In The Wigner Representation

JOURNAL OF CHEMICAL PHYSICS(2021)

引用 1|浏览6
暂无评分
摘要
We investigate the validity of the classical approximation to the numerically exact quantum dynamics for infrared laser-driven control of isomerization processes. To this end, we simulate the fully quantum mechanical dynamics both by wavepacket propagation in position space and by propagating the Wigner function in phase space employing a quantum-mechanical correction term. A systematic comparison is made with purely classical propagation of the Wigner function. On the example of a one-dimensional double well potential, we identify two complementary classes of pulse sequences that invoke either a quantum mechanically or a classically dominated control mechanism. The quantum control relies on a sequence of excitations and de-excitations between the system's eigenstates on a time scale far exceeding the characteristic vibrational oscillation periods. In contrast, the classical control mechanism is based on a short and strong few-cycle field exerting classical-like forces driving the wavepacket to the target potential well where it is slowed down and finally trapped. While in the first case, only the quantum mechanical propagation correctly describes the field-induced population transfer, the short pulse case is also amenable to a purely classical description. These findings shed light on the applicability of classical approximations to simulate laser-controlled dynamics and may offer a guideline for novel control experiments in more complex systems that can be analyzed and interpreted utilizing efficient state-of-the-art classical trajectory simulations based on ab initio molecular dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要