Intercomparison of Middle Atmospheric Meteorological Analyses for the Northern Hemisphere Winter 2009–2010

Atmospheric Chemistry and Physics(2021)

引用 8|浏览15
暂无评分
摘要
Abstract. Detailed meteorological analyses based on observations extending through the middle atmosphere (~15–100 km altitude) can provide key information to whole atmosphere modelling systems regarding the physical mechanisms linking day-to-day changes in ionospheric electron density to meteorological variability near the Earth’s surface. It is currently unclear how middle atmosphere analyses produced by various research groups consistently represent the wide range of proposed linking mechanisms involving migrating and non-migrating tides, planetary waves, gravity waves, and their impact on the zonal mean state in the mesosphere and lower thermosphere (MLT) region. To begin to address this issue, we present the first intercomparison among four such analyses, JAGUAR-DAS, MERRA-2, NAVGEM-HA, and WACCMX+DART, focusing on the Northern Hemisphere (NH) 2009–2010 winter that includes a major stratospheric sudden warming (SSW) in late January. This intercomparison examines the altitude, latitude, and time dependences of zonal mean zonal winds and temperatures among these four analyses over the 1 December 2009–31 March 2010 period, as well as latitude and altitude dependences of monthly mean amplitudes of the diurnal and semidiurnal migrating solar tides, the eastward propagating diurnal zonal wave number 3 nonmigrating tide, and traveling planetary waves associated with the quasi-5 day and quasi-2-day Rossby modes. Our results show generally good agreement among the four analyses up to the stratopause (~50 km altitude). Large discrepancies begin to emerge in the MLT owing to (1) differences in the types of satellite data assimilated by each system and (2) differences in the details of the global atmospheric models used by each analysis system. The results of this intercomparison provide initial estimates of uncertainty in analyses commonly used to constrain middle atmospheric meteorological variability in whole atmosphere model simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要