Energy Storage Structural Composites with Integrated Lithium‐Ion Batteries: A Review

Advanced materials and technologies(2021)

引用 56|浏览6
暂无评分
摘要
Integration of lithium-ion batteries into fiber-polymer composite structures so as to simultaneously carry mechanical loads and store electrical energy offer great potential to reduce the overall system weight. Herein, recent progresses in integration methods for achieving high mechanical efficiencies of embedding commercial lithium-ion batteries inside composite materials are reviewed. The manufacturing techniques used to fabricate energy storage structural composites are discussed together with a comparison of their mechanical properties, energy storage capacity, and electrical performance. The mechanical performance of energy storage composites containing lithium-ion batteries depends on many factors, including manufacturing method, materials used, structural design, and bonding between the structure and the integrated batteries. Energy storage composites with integrated lithium-ion pouch batteries generally achieve a superior balance between mechanical performance and energy density compared to other commercial battery systems. Potential applications are presented for energy storage composites containing integrated lithium-ion batteries including automotive, aircraft, spacecraft, marine and sports equipment. Opportunities and challenges in fabrication methods, mechanical characterizations, trade-offs in engineering design, safety, and battery subcomponents are also discussed.
更多
查看译文
关键词
energy storage, lithium-ion batteries, multifunctional composites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要