Homozygous mutation in MCM7 causes autosomal recessive primary microcephaly and intellectual disability

JOURNAL OF MEDICAL GENETICS(2022)

引用 4|浏览7
暂无评分
摘要
Background Minichromosomal maintenance (MCM) complex components 2, 4, 5 and 6 have been linked to human disease with phenotypes including microcephaly and intellectual disability. The MCM complex has DNA helicase activity and is thereby important for the initiation and elongation of the replication fork and highly expressed in proliferating neural stem cells. Methods Whole-exome sequencing was applied to identify the genetic cause underlying the neurodevelopmental disease of the index family. The expression pattern of Mcm7 was characterised by performing quantitative real-time PCR, in situ hybridisation and immunostaining. To prove the disease-causative nature of identified MCM7, a proof-of-principle experiment was performed. Results We reported that the homozygous missense variant c.793G>A/p.A265T (g.7:99695841C>T, NM_005916.4) in MCM7 was associated with autosomal recessive primary microcephaly (MCPH), severe intellectual disability and behavioural abnormalities in a consanguineous pedigree with three affected individuals. We found concordance between the spatiotemporal expression pattern of Mcm7 in mice and a proliferative state: Mcm7 expression was higher in early mouse developmental stages and in proliferative zones of the brain. Accordingly, Mcm7/MCM7 levels were detectable particularly in undifferentiated mouse embryonal stem cells and human induced pluripotent stem cells compared with differentiated neurons. We further demonstrate that the downregulation of Mcm7 in mouse neuroblastoma cells reduces cell viability and proliferation, and, as a proof-of-concept, that this is counterbalanced by the overexpression of wild-type but not mutant MCM7. Conclusion We report mutations of MCM7 as a novel cause of autosomal recessive MCPH and intellectual disability and highlight the crucial function of MCM7 in nervous system development.
更多
查看译文
关键词
mutation, missense, DNA replication, genetic association studies, nervous system diseases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要