Robust and Efficient Estimation of Relative Pose for Cameras on Selfie Sticks
IEEE Transactions on Pattern Analysis and Machine Intelligence(2022)
摘要
Taking selfies has become one of the major photographic trends of our time. In this study, we focus on the selfie stick, on which a camera is mounted to take selfies. We observe that a camera on a selfie stick typically travels through a particular type of trajectory around a sphere. Based on this finding, we propose a robust, efficient, and optimal estimation method for relative camera pose between two images captured by a camera mounted on a selfie stick. We exploit the special geometric structure of camera motion constrained by a selfie stick and define this motion as
spherical joint motion
. Utilizing a novel parametrization and calibration scheme, we demonstrate that the pose estimation problem can be reduced to a 3-degrees of freedom (DoF) search problem, instead of a generic 6-DoF problem. This facilitates the derivation of an efficient branch-and-bound optimization method that guarantees a global optimal solution, even in the presence of outliers. Furthermore, as a simplified case of spherical joint motion, we introduce
selfie motion
, which has a fewer number of DoF than spherical joint motion. We validate the performance and guaranteed optimality of our method on both synthetic and real-world data. Additionally, we demonstrate the applicability of the proposed method for two applications: refocusing and stylization.
更多查看译文
关键词
Selfie,selfie stick,relative pose estimation,branch-and-bound,global optimization
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络