On The Effect Of Phylogenetic Correlations In Coevolution-Based Contact Prediction In Proteins

PLOS COMPUTATIONAL BIOLOGY(2021)

引用 13|浏览3
暂无评分
摘要
Coevolution-based contact prediction, either directly by coevolutionary couplings resulting from global statistical sequence models or using structural supervision and deep learning, has found widespread application in protein-structure prediction from sequence. However, one of the basic assumptions in global statistical modeling is that sequences form an at least approximately independent sample of an unknown probability distribution, which is to be learned from data. In the case of protein families, this assumption is obviously violated by phylogenetic relations between protein sequences. It has turned out to be notoriously difficult to take phylogenetic correlations into account in coevolutionary model learning. Here, we propose a complementary approach: we develop strategies to randomize or resample sequence data, such that conservation patterns and phylogenetic relations are preserved, while intrinsic (i.e. structure- or function-based) coevolutionary couplings are removed. A comparison between the results of Direct Coupling Analysis applied to real and to resampled data shows that the largest coevolutionary couplings, i.e. those used for contact prediction, are only weakly influenced by phylogeny. However, the phylogeny-induced spurious couplings in the resampled data are compatible in size with the first false-positive contact predictions from real data. Dissecting functional from phylogeny-induced couplings might therefore extend accurate contact predictions to the range of intermediate-size couplings.Author summary Many homologous protein families contain thousands of highly diverged amino-acid sequences, which fold into close-to-identical three-dimensional structures and fulfill almost identical biological tasks. Global coevolutionary models, like those inferred by the Direct Coupling Analysis (DCA), assume that families can be considered as samples of some unknown statistical model, and that the parameters of these models represent evolutionary constraints acting on protein sequences. To learn these models from data, DCA and related approaches have to also assume that the distinct sequences in a protein family are close to independent, while in reality they are characterized by involved hierarchical phylogenetic relationships. Here we propose Null models for sequence alignments, which maintain patterns of amino-acid conservation and phylogeny contained in the data, but destroy any coevolutionary couplings, frequently used in protein structure prediction. We find that phylogeny actually induces spurious non-zero couplings. These are, however, significantly smaller that the largest couplings derived from natural sequences, and therefore have only little influence on the first predicted contacts. However, in the range of intermediate couplings, they may lead to statistically significant effects. Dissecting phylogenetic from functional couplings might therefore extend the range of accurately predicted structural contacts down to smaller coupling strengths than those currently used.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要