Cryogen-free scanning gate microscope for the characterization of Si/Si0.7Ge0.3 quantum devices at milli-Kelvin temperatures

arxiv(2021)

引用 4|浏览5
暂无评分
摘要
Silicon can be isotopically enriched, allowing for the fabrication of highly coherent semiconductor spin qubits. However, the conduction band of bulk Si exhibits a six-fold valley degeneracy which may adversely impact the performance of silicon quantum devices. To date, the spatial characterization of valley states in Si has remained limited. Moreover, techniques for probing valley states in functional electronic devices are needed. Here, we describe a cryogen-free scanning gate microscope for the characterization of Si/Si0.7Ge0.3 quantum devices at mK temperatures. The newly built instrument is the first cryogen-free scanning gate microscope capable of forming and measuring a quantum dot on a Si/SiGe device with an overlapping gate structure without compromising the ability to host multiple DC and microwave lines for quantum control experiments. The microscope is based on the Pan-walker design, with coarse positioning piezostacks and a fine scanning piezotube. A tungsten microscope tip is attached to a tuning fork for active control of the tip-to-sample distance. To reduce vibration noise from the pulse tube cooler, we utilize both active and passive vibration isolation mechanisms and achieve a root-mean-square noise in z of similar to 2 nm. Our microscope is designed to characterize fully functioning Si/Si0.7Ge0.3 quantum devices. As a proof of concept, we use the microscope to manipulate the charge occupation of a Si quantum dot, opening up a range of possibilities for the exploration of quantum devices and materials. (c) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
关键词
quantum,gate,si/si07ge03,cryogen-free,milli-kelvin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要