Tank-mixing adjuvants enhanced the efficacy of fludioxonil on cucumber anthracnose by ameliorating the penetration ability of active ingredients on target interface.

Colloids and surfaces. B, Biointerfaces(2021)

引用 8|浏览4
暂无评分
摘要
In this study, pot and field experiments showed that S903, Hasten and Gemini-31511 can significantly enhanced the control efficacy of fludioxonil on cucumber anthracnose. Then by studying the deposition and penetration interaction between active ingredients and cucumber leaves to revealed how the adjuvants influence the interaction process between pesticide active ingredients and target plants to improve the control efficacy. By analysis the effect of fludioxonil deposition to synergism of adjuvants, indicated that fludioxonil active ingredient deposition caused by adjuvants was not the main factor for the adjuvants synergistic effect. Fludioxonil + S903 yielded the lowest surface tension and contact angle, which also implying the best wetting ability. The mean diameters in Hasten + fludioxonil group were much smaller than those in only fludioxonil group (5.39 μm-90 g a.i. ha-1, 5.50 μm-180 g a.i. ha-1), the average particle size only had 3.45 μm (90 g a.i. ha-1) and 3.94 μm (180 g a.i. ha-1). And the result of spray droplets was consistent with the particles of fludioxonil crystals observed on glass slides and cucumber leaves. Therefore, S903 improved the penetrability of fludioxonil in the target plants by improving the wetting and dispersion of active ingredients on the target interface. Meantime, Hasten improved the penetrability of fludioxonil in the target plants by decreasing the particle size of active ingredients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要