ECNNs: Ensemble Learning Methods for Improving Planar Grasp Quality Estimation
2021 IEEE International Conference on Robotics and Automation (ICRA)(2021)
Worcester Polytech Inst
Abstract
We present an ensemble learning methodology that combines multiple existing robotic grasp synthesis algorithms and obtain a success rate that is significantly better than the individual algorithms. The methodology treats the grasping algorithms as "experts" providing grasp "opinions". An Ensemble Convolutional Neural Network (ECNN) is trained using a Mixture of Experts (MOE) model that integrates these opinions and determines the final grasping decision. The ECNN introduces minimal computational cost overhead, and the network can virtually run as fast as the slowest expert. We test this architecture using open-source algorithms in the literature by adopting GQCNN 4.0, GGCNN and a custom variation of GGCNN as experts and obtained a 6% increase in the grasp success on the Cornell Dataset compared to the best-performing individual algorithm. The performance of the method is also demonstrated using a Franka Emika Panda arm.
MoreTranslated text
Key words
ECNN,ensemble learning,robotic grasp synthesis,ensemble convolutional neural network,open-source algorithms,planar grasp quality estimation,Mixture of Experts model,grasping decision,MOE
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined