Surface Modification Effect And Electrochemical Performance Of Lioh-High Surface Activated Carbon As A Cathode Material In Edlc

MOLECULES(2021)

引用 6|浏览1
暂无评分
摘要
This study aimed to improve the performance of the activated carbon-based cathode by increasing the Li content and to analyze the effect of the combination of carbon and oxidizing agent. The crystal structure and chemical structure phase of Li-high surface area activated carbon material (Li-HSAC) was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, the surface state and quantitative element by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the surface properties with pore-size distribution by Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) and t-plot methods. The specific surface area of the Li-YP80F is 1063.2 m(2)/g, micropore volume value is 0.511 cm(3)/g and mesopore volume is 0.143 cm(3)/g, and these all values are higher than other LiOH-treated carbon. The surface functional group was analyzed by a Boehm titration, and the higher number of acidic groups compared to the target facilitated the improved electrolyte permeability, reduced the interface resistance and increased the electrochemical properties of the cathode. The oxidizing agent of LiOH treated high surface area of activated carbon was used for the cathode material for EDLC (electric double layer capacitor) to determine its electrochemical properties and the as-prepared electrode retained excellent performance after 10 cycles and 100 cycles. The anodic and cathodic peak current value and peak segregation of Li-YP80F were better than those of the other two samples, due to the micropore-size and physical properties of the sample. The oxidation peak current value appeared at 0.0055 mA/cm(2) current density and the reduction peak value at -0.0014 mA/cm(2), when the Li-YP80F sample used to the Cu-foil surface. The redox peaks appeared at 0.0025 mA/cm(2) and -0.0009 mA/cm(2), in the case of using a Nickel foil, after 10 cycling test. The electrochemical stability of cathode materials was tested by 100 recycling tests. After 100 recycling tests, peak current drop decreased the peak profile became stable. The LiOH-treated high surface area of activated carbon had synergistically upgraded electrochemical activity and superior cycling stability that were demonstrated in EDLC.
更多
查看译文
关键词
LiOH-treatment, high surface area of activated carbon, cathode material, electrochemical performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要