Establishment and evaluation of a rat model of extracorporeal membrane oxygenation (ECMO) thrombosis using a 3D-printed mock-oxygenator

JOURNAL OF TRANSLATIONAL MEDICINE(2021)

引用 4|浏览7
暂无评分
摘要
Background Extracorporeal membrane oxygenation (ECMO) research using large animals requires a significant amount of resources, slowing down the development of new means of ECMO anticoagulation. Therefore, this study developed and evaluated a new rat ECMO model using a 3D-printed mock-oxygenator. Methods The circuit consisted of tubing, a 3D-printed mock-oxygenator, and a roller pump. The mock-oxygenator was designed to simulate the geometry and blood flow patterns of the fiber bundle in full-scale oxygenators but with a low (2.5 mL) priming volume. Rats were placed on arteriovenous ECMO at a 1.9 mL/min flow rate at two different heparin doses (n = 3 each): low (15 IU/kg/h for eight hours) versus high (50 IU/kg/h for one hour followed by 25 IU/kg/h for seven hours). The experiment continued for eight hours or until the mock-oxygenator failed. The mock-oxygenator was considered to have failed when its blood flow resistance reached three times its baseline resistance. Results During ECMO, rats maintained near-normal mean arterial pressure and arterial blood gases with minimal hemodilution. The mock-oxygenator thrombus weight was significantly different (p < 0.05) between the low (0.02 ± 0.006 g) and high (0.003 ± 0.001 g) heparin delivery groups, and blood flow resistance was also larger in the low anticoagulation group. Conclusions This model is a simple, inexpensive system for investigating new anticoagulation agents for ECMO and provides low and high levels of anticoagulation that can serve as control groups for future studies.
更多
查看译文
关键词
Extracorporeal membrane oxygenation, Rats, Three-dimensional&#160, printing, Thrombosis, Heparin, Anticoagulants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要