Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury.

Toxicology(2021)

引用 16|浏览0
暂无评分
摘要
Despite interleukin 33 (IL-33) functions as an "alarmin" released from hepatic dead cells in response to tissue damages, the interrelationship between IL-33-mediated hepatocyte autophagy and innate immune response in the acetaminophen (APAP)-induced liver injury (AILI) process remains obscure. This study aimed to explore the regulation of IL-33 on hepatocyte autophagy and macrophage polarization after APAP challenge in vivo and vitro. We found IL-33 released from hepatic necrosis was elevated in the AILI mouse model. Blockage of IL-33 exacerbated liver injury by consuming liver-resident macrophages cells (Kupffer cells, KCs) and promoting hepatic inflammatory factors secretion, such as TNF-α, IL-6 and IL-1β in the early phase of liver injury. Interestingly, IL-33 deficiency further activated hepatocyte autophagy and disrupted M2 macrophage polarization post-APAP challenge in vivo and vitro, which can be reversed by recombinant IL-33 treatment. Mechanistically, administration of IL-33 can directly enhance M2 polarization via PI3K/Akt signaling pathway and activate protective hepatocyte autophagy via AMPKα/mTOR signaling pathway in the AILI process. In conclusion, our data firstly demonstrates that IL-33 exerts protective effects on hepatocytes through the activation of autophagy and functions as an innate immunity regulator mediating macrophage polarization in the early phase of AILI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要