Barrier-Free Large-Scale Sparse Tensor Accelerator (BARISTA) For Convolutional Neural Networks

arxiv(2021)

引用 0|浏览4
暂无评分
摘要
Convolutional neural networks (CNNs) are emerging as powerful tools for visual recognition. Recent architecture proposals for sparse CNNs exploit zeros in the feature maps and filters for performance and energy without losing accuracy. Sparse architectures that exploit two-sided sparsity in both feature maps and filters have been studied only at small scales (e.g., 1K multiply-accumulate(MAC) units). However, to realize their advantages in full, the sparse architectures have to be scaled up to levels of the dense architectures (e.g., 32K MACs in the TPU). Such scaling is challenging since achieving reuse through broadcasts incurs implicit barrier cost raises the inter-related issues of load imbalance, buffering, and on-chip bandwidth demand. SparTen, a previous scheme, addresses one aspect of load balancing but not other aspects, nor the other issues of buffering and bandwidth. To that end, we propose the barrier-free large-scale sparse tensor accelerator (BARISTA). BARISTA (1) is the first architecture for scaling up sparse CNN accelerators; (2) reduces on-chip bandwidth demand by telescoping request-combining the input map requests and snarfing the filter requests; (3) reduces buffering via basic buffer sharing and avoids the ensuing barriers between consecutive input maps by coloring the output buffers; (4) load balances intra-filter work via dynamic round-robin work assignment; and (5) employs hierarchical buffering which achieves high cache bandwidth via a few, wide, shared buffers and low buffering via narrower, private buffers at the compute. Our simulations show that, on average, barista performs 5.4x, 2.2x, 1.7x, 2.5x better than a dense, a one-sided, a naively-scaled two-sided, and an iso-area two-sided architecture, respectively. Using 45-nm technology, ASIC synthesis of our RTL design for four clusters of 8K MACs at 1 GHz clock speed, reports 213 mm$^2$ area and 170 W power.
更多
查看译文
关键词
convolutional neural networks,accelerator,neural networks,barista,barrier-free,large-scale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要