Hepcidin-Induced Reduction In Iron Content And Pgc-1 Beta Expression Negatively Regulates Osteoclast Differentiation To Play A Protective Role In Postmenopausal Osteoporosis

AGING-US(2021)

引用 23|浏览7
暂无评分
摘要
As a necessary trace element, iron is involved in many physiological processes. Clinical and basic studies have found that disturbances in iron metabolism, especially iron overload, might lead to bone loss and even be involved in postmenopausal osteoporosis. Hepcidin is a key regulator of iron homeostasis. However, the exact role of hepcidin in bone metabolism and the underlying mechanism remain unknown. In this study, we found that in postmenopausal osteoporosis cohort, the concentration of hepcidin in the serum was significantly reduced and positively correlated with bone mineral density. Ovariectomized (OVX) mice were then used to construct an osteoporosis model. Hepcidin overexpression in these mice significantly improved bone mass and rescued the phenotype of bone loss. Additionally, overexpression of hepcidin in OVX mice greatly reduced the number and differentiation of osteoclasts in vivo and in vitro. This study found that overexpression of hepcidin significantly inhibited ROS production, mitochondrial biogenesis, and PGC-1 beta expression. These data showed that hepcidin protected osteoporosis by reducing iron levels in bone tissue, and in conjunction with PGC-1 beta, reduced ROS production and the number of mitochondria, thus inhibiting osteoclast differentiation and bone absorption. Hepcidin could provide new targets for the clinical treatment of postmenopausal osteoporosis.
更多
查看译文
关键词
ROS, iron, postmenopausal osteoporosis, hepcidin, PGC-1 beta
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要