Efficient Reaction Deletion Algorithms for Redesign of Constraint-based Metabolic Networks for Metabolite Production with Weak Coupling

Ipsj Transactions on Bioinformatics(2021)

引用 2|浏览0
暂无评分
摘要
Abstract BackgroundMetabolic engineering strategies enabling the production of specific target metabolites by host strains can be identified in silico through the use of metabolic network analysis such as flux balance analysis. This type of metabolic redesign is based on the computation of reactions that should be deleted from the original network representing the metabolism of the host strain to enable the production of the target metabolites while still ensuring its growth (the concept of growth coupling). In this context, it is important to use algorithms that enable this growth-coupled reaction deletions identification for any metabolic network topologies and any potential target metabolites. A recent method using a strong growth coupling assumption has been shown to be able to identify such computational redesign for nearly all metabolites included in the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae when cultivated under aerobic conditions. However, this approach enables the computational redesign of S. cerevisiae for only 3.9% of all metabolites if under anaerobic conditions. Therefore, it is necessary to develop algorithms able to perform for various culture conditions.ResultsThe author developed an algorithm that could calculate the reaction deletions that achieve the coupling of growth and production for 91.3% metabolites in genome-scale models of S. cerevisiae under anaerobic conditions. Computational experiments showed that the proposed algorithm is efficient also for aerobic conditions and Escherichia coli. In these analyses, the least target production rates were evaluated using flux variability analysis when multiple fluxes yield the highest growth rate. To demonstrate the feasibility of the coupling, the author derived appropriate reaction deletions using the new algorithm for target production in which the search space was divided into small cubes (CubeProd).ConclusionsThe author developed a novel algorithm, CubeProd, to demonstrate that growth coupling is possible for most metabolites in S.cerevisiae under anaerobic conditions. This may imply that growth coupling is possible by reaction deletions for most target metabolites in any genome-scale constraint-based metabolic networks. The developed software, CubeProd, implemented in MATLAB, and the obtained reaction deletion strategies are freely available.
更多
查看译文
关键词
metabolic networks,efficient reaction deletion,metabolite production,coupling,constraint-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要