Ultrafast Dynamics Of Photoexcited Carriers In Perovskite Semiconductor Nanocrystals

NANOPHOTONICS(2021)

引用 15|浏览21
暂无评分
摘要
Perovskite semiconductor nanocrystals have emerged as a promising family of materials for optoelectronic applications including light-emitting diodes, lasers, light-to-electricity convertors and quantum light emitters. The performances of these devices are fundamentally dependent on different aspects of the excited-state dynamics in nanocrystals. Herein, we summarize the recent progress on the photoinduced carrier dynamics studied by a variety of time-resolved spectroscopic methods in perovskite nanocrystals. We review the dynamics of carrier generation, recombination and transport under different excitation densities and photon energies to show the pathways that underpin the photophysics for light-emitting diodes and solar cells. Then, we highlight the up-to-date spin dynamics and coherent exciton dynamics being manifested with the exciton fine levels in perovskite semiconductor nanocrystals which are essential for potential applications in quantum information technology. We also discuss the controversial results and the possible origins yet to be resolved. In-depth study toward a comprehensive picture of the excited-state dynamics in perovskite nanocrystals may provide the key knowledge of the device operation mechanism, enlighten the direction for device optimization and stimulate the adventure of new conceptual devices.
更多
查看译文
关键词
coherent dynamics, exciton dynamics, perovskite nanocrystals, spin dynamics, ultrafast spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要