Processing thin but robust electrolytes for solid-state batteries

NATURE ENERGY(2021)

引用 263|浏览22
暂无评分
摘要
The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction.
更多
查看译文
关键词
Batteries,Electrochemistry,Materials for energy and catalysis,Energy,general,Energy Policy,Economics and Management,Energy Systems,Energy Storage,Renewable and Green Energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要