Stress-induced growth rate reduction restricts metabolic resource utilization to modulate osmo-adaptation time.

Cell reports(2021)

引用 11|浏览4
暂无评分
摘要
A near-constant feature of stress responses is a downregulation or arrest of the cell cycle, resulting in transient growth slowdown. To investigate the role of growth slowdown in the hyperosmotic shock response of S. cerevisiae, we perturbed the G1/S checkpoint protein Sic1 to enable osmo-stress response activation with diminished growth slowdown. We document that in this mutant, adaptation to stress is accelerated rather than delayed. This accelerated recovery of the mutant proceeds by liquidation of internal glycogen stores, which are then shunted into the osmo-shock response. Therefore, osmo-adaptation in wild-type cells is delayed because growth slowdown prevents full accessibility to cellular glycogen stores. However, faster adaptation comes at the cost of acute sensitivity to subsequent osmo-stresses. We suggest that stress-induced growth slowdown acts as an arbiter to regulate the resources devoted to osmo-shock, balancing short-term adaptation with long-term robustness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要