A context-aware gate set tomography characterization of superconducting qubits

arxiv(2021)

引用 0|浏览2
暂无评分
摘要
The efficiency of Quantum Characterisation, Verification, and Validation (QCVV) protocols highly hinges on the agreement between the assumed noise model and the underlying error mechanisms. As a matter of fact, errors in Quantum Processing Units (QPUs) incorporate various aspects of context-dependability which are overlooked by the majority of the commonly used QCVV protocols. As QCVV protocols are indispensable when it comes to characterizing and evaluating quantum operations, there is a serious need for a detailed characterization taking into account such aspects. In this work, we address these shortcomings by designing a context-aware version of the gate set tomography (GST) protocol. Our experiment selection approach is based on a polynomial quantification of the accumulation of errors within the designed circuits. Using simulated QPUs, we show that this technique enables a characterization with an inaccuracy reaching $10^{-5}$. Furthermore, we use our proposed protocol to experimentally infer context-dependent errors, namely crosstalk and memory effects, in a publicly accessible cloud-based superconducting qubits platform. Our results show that when the GST is upgraded to include such features of context-awareness, a large coherence in the errors is observed. These findings open up possibilities of drastically reducing the errors within the currently demonstrated QPUs.
更多
查看译文
关键词
tomography characterization,context-aware
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要