Auto-Navigator: Decoupled Neural Architecture Search For Visual Navigation

T Tang,X Yu,X Dong,Y Yang大牛学者

2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021(2021)

引用 4|浏览39
摘要
Existing visual navigation approaches leverage classification neural networks to extract global features from visual data for navigation. However, these networks are not originally designed for navigation tasks. Thus, the neural architectures might not be suitable to capture scene contents. Fortunately, neural architecture search (NAS) brings a hope to solve this problem. In this paper, we propose an Auto-Navigator to customize a specialized network for visual navigation. However, as navigation tasks mainly rely on reinforcement learning (RL) rewards in training, such weak supervision is insufficiently indicative for NAS to optimize visual perception network. Thus, we introduce imitation learning (IL) with optimal paths to optimize navigation policies while selecting an optimal architecture. As Auto-Navigator can obtain a direct supervision in every step, such guidance greatly facilitates architecture search. In particular, we initialize our Auto-Navigator with a learnable distribution over the search space of visual perception architecture, and then optimize the distribution with IL supervision. Afterwards, we employ an RL reward function to fine-tune our Auto-Navigator to improve the generalization ability of our model. Extensive experiments demonstrate that our Auto-Navigator outperforms baseline methods on Gibson and Matterport3D without significantly increasing network parameters.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn