Polarization- And Electrode-Optimized Polyvinylidene Fluoride Films For Harsh Environmental Piezoelectric Nanogenerator Applications

SMALL(2021)

引用 17|浏览8
暂无评分
摘要
While piezoelectric nanogenerators have demonstrated the effective conversion of tiny mechanical vibrations to electricity, their performances are rarely examined under harsh environmental conditions. Here, a multilayered polyvinylidene fluoride (PVDF) film-based piezoelectric nanogenerator (ML-PENG) is demonstrated to generate considerable and stable power outputs even at extremely low temperatures and pressures, and under strong UV. Up-/down-polarized PVDF films are alternately stacked, and Ag electrodes are intercalated between the two adjacent films. At -266 degrees C and 10(-5) Torr, the ML-PENG generates an open-circuit voltage of 1.1 V, a short-circuit current density of 8 nA cm(-2), and a power density of 4.4 nW cm(-2). The piezoelectric outputs are quite stable against prolonged illumination of UV, large temperature- and pressure-variations, and excessive mechanical vibrations. The piezoelectric power density is greatly enhanced above the freezing and glass transition temperatures of PVDF and recorded to be 10, 105, and 282 nW cm(-2) at -73, 0, and 77 degrees C, respectively. The ML-PENG generates sufficient power to operate five light-emitting diodes by harvesting biomechanical energy under simulated Martian conditions. This work suggests that polarization- and electrode-optimized ML-PENG can serve as a reliable and economic power source in harsh and inaccessible environments like polar areas of Earth and extraterrestrial Mars.
更多
查看译文
关键词
harsh environment, inaccessible location, Mars, piezoelectric nanogenerator, polyvinylidene fluoride
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要