The βγ subunit of heterotrimeric G proteins interacts with actin filaments during neuronal differentiation.

Biochemical and biophysical research communications(2021)

引用 1|浏览6
暂无评分
摘要
The βγ subunit of heterotrimeric G proteins, a key molecule in the G protein-coupled receptors (GPCRs) signaling pathway, has been shown to be an important factor in the modulation of the microtubule cytoskeleton. Gβγ has been shown to bind to tubulin, stimulate microtubule assembly, and promote neurite outgrowth of PC12 cells. In this study, we demonstrate that in addition to microtubules, Gβγ also interacts with actin filaments, and this interaction increases during NGF-induced neuronal differentiation of PC12 cells. We further demonstrate that the Gβγ-actin interaction occurs independently of microtubules as nocodazole, a well-known microtubule depolymerizing agent did not inhibit Gβγ-actin complex formation in PC12 cells. A confocal microscopic analysis of NGF-treated PC12 cells revealed that Gβγ co-localizes with both actin and microtubule cytoskeleton along neurites, with specific co-localization of Gβγ with actin at the distal end of these neuronal processes. Furthermore, we show that Gβγ interacts with the actin cytoskeleton in primary hippocampal and cerebellar rat neurons. Our results indicate that Gβγ serves as an important modulator of the neuronal cytoskeleton by interacting with both microtubules and actin filaments, and is likely to participate in various aspects of neuronal differentiation including axon and growth cone formation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要