Geometrical Reconstruction Of Fluorescence Events Observed By The Lhaaso Experiment *

F. Aharonian, Q. An, Axikegu,L. X. Bai,Y. X. Bai,Y. W. Bao,D. Bastieri,X. J. Bi,Y. J. Bi,H. Cai, J. T. Cai,Z. Cao, J. Chang, J. F. Chang,X. C. Chang,B. M. Chen,J. Chen,L. Chen,M. J. Chen,M. L. Chen,Q. H. Chen,S. H. Chen,S. Z. Chen,T. L. Chen,X. L. Chen,Y. Chen, N. Cheng,Y. D. Cheng, S. W. Cui,X. H. Cui,Y. D. Cui, B. Z. Dai,H. L. Dai,Z. G. Dai, Danzengluobu,D. della Volpe,B. D'Ettorre Piazzoli,X. J. Dong,J. H. Fan,Y. Z. Fan,Z. X. Fan, J. Fang, K. Fang, C. F. Feng,L. Feng, S. H. Feng,Y. L. Feng,B. Gao, C. D. Gao, Q. Gao, W. Gao, M. M. Ge,L. S. Geng,G. H. Gong, Q. B. Gou,M. H. Gu,J. G. Guo,X. L. Guo,Y. Q. Guo,Y. Y. Guo, Y. A. Han,H. H. He,H. N. He,J. C. He,S. L. He,X. B. He,Y. He,M. Heller,Y. K. Hor,C. Hou,X. Hou,H. B. Hu,S. Hu,S. C. Hu,X. J. Hu,D. H. Huang,Q. L. Huang,W. H. Huang,X. T. Huang,Z. C. Huang,F. Ji,X. L. Ji, H. Y. Jia,K. Jiang,Z. J. Jiang,C. Jin,D. Kuleshov, K. Levochkin,B. B. Li,C. Li, F. Li,H. B. Li,H. C. Li,H. Y. Li,J. Li,K. Li, W. L. Li, X. Li,X. R. Li,Y. Li,Y. Z. Li,Z. Li, E. W. Liang,Y. F. Liang, S.J. Lin,B. Liu, C. Liu, D. Liu, H. Liu,H. D. Liu,J. Liu,J. L. Liu,J. S. Liu,J. Y. Liu,M. Y. Liu,R. Y. Liu,S. M. Liu,W. Liu,Y. N. Liu, Z. X. Liu,W. J. Long,R. Lu,H. K. Lv, B. Q. Ma,L. L. Ma,X. H. Ma, J. R. Mao,A. Masood,W. Mitthumsiri,T. Montaruli,Y. C. Nan, B. Y. Pang, P. Pattarakijwanich,Z. Y. Pei, M. Y. Qi,D. Ruffolo, V. Rulev,A. Sáiz,L. Shao, O. Shchegolev, X. D. Sheng,J. R. Shi,H. C. Song,Yu.V. Stenkin, V. Stepanov,Q. N. Sun,X. N. Sun,Z. B. Sun,P. H. T. Tam,Z. B. Tang,W. W. Tian,B. D. Wang,C. Wang,H. Wang, H. G. Wang,J. C. Wang,J. S. Wang,L. P. Wang,L. Y. Wang,R. N. Wang, W. Wang,X. G. Wang,X. J. Wang,X. Y. Wang,Y. D. Wang,Y. J. Wang,Y. P. Wang,Z. Wang,Z. H. Wang,Z. X. Wang,D. M. Wei,J. J. Wei,Y. J. Wei,T. Wen,C. Y. Wu, H. R. Wu, S. Wu,W. X. Wu,X. F. Wu, S. Q. Xi,J. Xia,J. J. Xia, G. M. Xiang, G. Xiao, H. B. Xiao, G. G. Xin,Y. L. Xin,Y. Xing,D. L. Xu,R. X. Xu, L. Xue,D. H. Yan, C. W. Yang,F. F. Yang,J. Y. Yang,L. L. Yang,M. J. Yang,R. Z. Yang, S. B. Yang, Y. H. Yao, Z. G. Yao, Y. M. Ye,L. Q. Yin,N. Yin, X. H. You,Z. Y. You,Y. H. Yu,Q. Yuan, H. D. Zeng,T. X. Zeng,W. Zeng, Z. K. Zeng,M. Zha, X. X. Zhai,B. B. Zhang,H. M. Zhang,H. Y. Zhang,J. L. Zhang,J. W. Zhang,L. Zhang,L. X. Zhang,P. F. Zhang,P. P. Zhang,R. Zhang,S. R. Zhang,S. S. Zhang,X. Zhang,X. P. Zhang,Y. Zhang,Y. F. Zhang,Y. L. Zhang,B. Zhao,J. Zhao, L. Zhao, L. Z. Zhao,S. P. Zhao, F. Zheng,Y. Zheng,B. Zhou,H. Zhou,J. N. Zhou,P. Zhou,R. Zhou, X. X. Zhou, C. G. Zhu, F. R. Zhu,H. Zhu,K. J. Zhu,X. Zuo

Chinese Physics C(2021)

引用 1|浏览10
暂无评分
摘要
The LHAASO-WFCTA experiment, which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique, uses a new generation of high-performance telescopes. To ensure that the experiment has excellent detection capability associated with the measurement of the energy spectrum, the primary composition of cosmic rays, and so on, an accurate geometrical reconstruction of air-shower events is fundamental. This paper describes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA (Wide Field of view Cherenkov/Fluorescence Telescope Array) detectors. Two approaches, which take full advantage of the WFCTA detectors, are investigated. One is the stereo-angular method, which uses the pointing of triggered SiPMs in the shower trajectory, and the other is the stereo-timing method, which uses the triggering time of the fired SiPMs. The results show that both methods have good geometrical resolution; the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.
更多
查看译文
关键词
cosmic ray, fluorescence telescope, stereo observation, geometricalreconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要