Strategy By Latitude? Higher Photosynthetic Capacity And Root Mass Fraction In Northern Than Southern Silver Birch (Betula Pendula Roth) In Uniform Growing Conditions

TREE PHYSIOLOGY(2021)

引用 6|浏览11
暂无评分
摘要
Growth of northern trees is limited by short growing seasons. In multi-year trials, northern trees usually grow less than southern ones but can have higher gas exchange, whereas differences in biomass allocation and its relation to photosynthesis are less known. We characterized silver birch (Betula pendula Roth) provenances from southern (latitude 61 degrees) and northern (latitude 67 degrees) Finland in uniform chamber conditions. In a time-series experiment, we measured traits related to growth, biomass allocation and photosynthesis, and determined gas exchange responses to temperature and light. We found provenance differences in photosynthetic capacity and growth. The northern provenance allocated relatively more to roots, having a higher root mass fraction and lower shoot:root ratio than the southern provenance. On the other hand, the northern provenance had fewer leaves and lower total leaf dry weight (DW) than the southern provenance. The northern provenance attained higher rates of net photosynthesis (A(net)) and higher stomatal conductance (g(s)) in all measured temperatures and higher photosynthesis at the optimum temperature (A(opt)) than the southern provenance, but there was no difference in the optimum temperature of photosynthesis (T-opt, 18.3 degrees C for the southern provenance vs 18.9 degrees C for the northern one). Photosynthetic light response curves showed no between-provenance differences. In a time-series, the northern provenance had higher A(net) than the southern provenance, but g(s) was similar. The northern provenance had higher maximum quantum yield of photosystem II photochemistry (F-v/F-m) than the southern provenance. There were no differences between provenances in height, total plant DW, shoot DW, root DW or shoot mass fraction. Our results suggest that the provenances occupy a common thermal niche, or can at least relatively quickly acclimate to a common growth temperature. Thus, carbon assimilation of these northern trees may not be significantly affected by rising temperatures alone. In an equal photoperiod and optimal conditions, we found different one-season biomass accumulation strategies: southern trees grow with more leaves, while northern trees reach similar total assimilation (total DW, height) with more efficient photosynthetic capacity per leaf area (higher gas exchange, higher F-v/F-m) and relatively more investment in the below-ground fraction of the plant.
更多
查看译文
关键词
Betula pendula (silver birch), biomass allocation, chlorophyll, chlorophyll fluorescence, gas exchange, growth, light response, photosynthesis, provenance, shoot:root ratio, stomatal conductance, temperature response
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要