On Improved Training of CNN for Acoustic Source Localisation

IEEE/ACM Transactions on Audio, Speech, and Language Processing(2021)

Cited 13|Views38
No score
Abstract
Convolutional Neural Networks (CNNs) are a popular choice for estimating Direction of Arrival (DoA) without explicitly estimating delays between multiple microphones. The CNN method first optimises unknown filter weights (of a CNN) by using observations and ground-truth directional information. This trained CNN is then used to predict incident directions given test observations. Most existing methods train using spectrally-flat random signals and test using speech. In this paper, which focuses on single source DoA estimation, we find that training with speech or music signals produces a relative improvement in DoA accuracy for a variety of audio classes across 16 acoustic conditions and 9 DoAs, amounting to an average improvement of around 17% and 19% respectively when compared to training with spectrally flat random signals. This improvement is also observed in scenarios in which the speech and music signals are synthesised using, for example, a Generative Adversarial Network (GAN). When the acoustic environments during test and training are similar and reverberant, training a CNN with speech outperforms Generalized Cross Correlation (GCC) methods by about 125%. When the test conditions are different, a CNN performs comparably. This paper takes a step towards answering open questions in the literature regarding the nature of the signals used during training, as well as the amount of data required for estimating DoA using CNNs.
More
Translated text
Key words
Direction of arrival,microphone arrays,neural networks,convolutional neural network (CNN),generative adversarial network (GAN)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined