Understanding Bounding Functions in Safety-Critical UAV Software

International Conference on Software Engineering(2021)

引用 1|浏览15
暂无评分
摘要
ABSTRACTUnmanned Aerial Vehicles (UAVs) are an emerging computation platform known for their safety-critical need. In this paper, we conduct an empirical study on a widely used open-source UAV software framework, Paparazzi, with the goal of understanding the safety-critical concerns of UAV software from a bottom-up developer-in-the-field perspective. We set our focus on the use of Bounding Functions (BFs), the runtime checks injected by Paparazzi developers on the range of variables. Through an in-depth analysis on BFs in the Paparazzi autopilot software, we found a large number of them (109 instances) are used to bound safety-critical variables essential to the cyber-physical nature of the UAV, such as its thrust, its speed, and its sensor values. The novel contributions of this study are two fold. First, we take a static approach to classify all BF instances, presenting a novel datatype-based 5-category taxonomy with finegrained insight on the role of BFs in ensuring the safety of UAV systems. Second, we dynamically evaluate the impact of the BF uses through a differential approach, establishing the UAV behavioral difference with and without BFs. The two-pronged static and dynamic approach together illuminates a rarely studied design space of safety-critical UAV software systems.
更多
查看译文
关键词
unmanned aerial vehicles, hounding functions, safety
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要