In situ rolling circle amplification surface modifications to improve E. coli O157:H7 capturing performances for rapid and sensitive microfluidic detection applications.

Analytica chimica acta(2021)

引用 11|浏览12
暂无评分
摘要
We investigated the application of rolling circle amplification (RCA) to modify microfluidic channels for potential sensitive detection applications. To this end, a novel in situ capturing RCA (cRCA) strategy was used to modify the inner surfaces of microfluidic channels with cRCA products that featured repeating tandem capturing aptamers specific for E. coli O157:H7 cells. We showed that the in situ cRCA reaction modified microfluidic channels demonstrated significantly enhanced capturing efficiency in a wide range of flow rates when compared with the unit-aptamer approach. We demonstrated for the first time that microfluidic surfaces modified with the in situ cRCA products showed peak capturing performances both in terms of target capturing efficiency and specificity, and this was likely due to unexpected base-pairing that resulted in altered secondary structures of the capturing aptamers. Our data suggest that the in situ cRCA surface modification is a promising strategy to improve capturing performances in microfluidic devices in sensitive detection applications that also require high throughput. However, cRCA reaction conditions, particularly reaction time and concentrations of initial circular template, must be carefully investigated before the potentials of the in situ cRCA surface modification approach can be fully realized.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要