Validation of a PCR-Based Next-Generation Sequencing Approach for the Detection and Quantification of Minimal Residual Disease in Acute Lymphoblastic Leukemia and Multiple Myeloma Using gBlocks as Calibrators

Jona Van der Straeten, Wouter De Brouwer, Emmanuelle Kabongo,Marie-Françoise Dresse,Karel Fostier,Rik Schots,Ivan Van Riet,Marleen Bakkus

The Journal of Molecular Diagnostics(2021)

引用 5|浏览11
暂无评分
摘要
Detection of minimal residual disease (MRD) to guide therapy has been a standard practice in treatment of childhood acute lymphoblastic leukemia (ALL) for decades. In multiple myeloma (MM), a clear correlation is found between absence of MRD and longer survival. Quantitative allele-specific oligonucleotide (qASO)-PCR is the standard molecular method for MRD detection in these hematologic malignant tumors. However, this technique has some drawbacks that can be overcome by next-generation sequencing (NGS). In this study, NGS is validated as an alternative method for qASO-PCR for MRD detection in both ALL and MM. MRD results obtained by NGS and qASO-PCR were compared in 59 and 39 bone marrow samples of 33 and 14 patients with ALL and MM, respectively. Our results indicate that the use of gBlocks as calibrators makes the NGS approach a powerful tool to quantify MRD. With an input of 400 ng of DNA (corresponding to approximately 7 × 104 cells), a limit of detection of 0.01% can be achieved. The specificity of the NGS-MRD technique was 100%, and a correlation with qASO-PCR for quantifiable MRD results of 0.93 and 0.91 was found in ALL and MM, respectively. Especially for MM, the higher applicability (100%) of the NGS-MRD protocol, compared with qASO-PCR (57%), was clearly demonstrated. These results demonstrate that NGS is an even better alternative to qASO-PCR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要