Live cell mitochondrial 3-dimensional dynamic ultrastructures under oxidative phosphorylation revealed by a Pyridine-BODIPY probe.

Biosensors & bioelectronics(2021)

引用 6|浏览9
暂无评分
摘要
Recent advancements in super-resolution nanoscopy allowed the study of mitochondrial biology at nanoscale and boosted the understanding its correlated cellular processes those were previously poorly understood. Nevertheless, studying mitochondrial ultrastructure remains a challenge due to the lack of probes that could target specific mitochondrial substances (e.g. cristae or mtDNA) and survive under harsh super-resolution optical conditions. Herein, in this work, we have rationally constructed a pyridine-BODIPY (Py-BODIPY) derivative that could target mitochondrial membrane in living cells without interfering its physiological microenvironments. Furthermore, we found Py-BODIPY is a membrane potential independent probe, hence it is not limit to live-cell staining but also showed a strong internalization into pre-fixed and stimulus disrupted sample. Importantly, its cristae specificity and superb photostability allow the observation of mitochondrial dynamic nano-structures with an unprecedented resolution, allow demonstrating how mitochondrial 3D ultrastructure evolved under oxidative phosphorylation condition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要