# Extending the application of the LCSR method to low momenta using QCD renormalization-group summation. Theory and phenomenology

arxiv（2021）

Abstract

We show that using renormalization-group summation to generate the QCD radiative corrections to the $\pi-\gamma$ transition form factor, calculated with lightcone sum rules (LCSR), renders the strong coupling free of Landau singularities while preserving the QCD form-factor asymptotics. This enables a reliable applicability of the LCSR method to momenta well below 1 GeV$^2$. This way, one can use the new preliminary BESIII data with unprecedented accuracy below 1.5 GeV$^2$ to fine tune the prefactor of the twist-six contribution. Using a combined fit to all available data below 3.1 GeV$^2$, we are able to determine all nonperturbative scale parameters and a few Gegenbauer coefficients entering the calculation of the form factor. Employing these ingredients, we determine a pion distribution amplitude with conformal coefficients $(b_2,b_4)$ that agree at the $1\sigma$ level with the data for $Q^2 \leqslant 3.1$ GeV$^2$ and fulfill at the same time the lattice constraints on $b_2$ at N$^3$LO together with the constraints from QCD sum rules with nonlocal condensates.The form-factor prediction calculated herewith reproduces the data below 1 GeV$^2$ significantly better than analogous predictions based on a fixed-order power-series expansion in the strong coupling constant.

MoreTranslated text

AI Read Science

Must-Reading Tree

Example

Generate MRT to find the research sequence of this paper

Chat Paper

Summary is being generated by the instructions you defined