N-terminal acetylation does not alter α-synuclein's interfacial properties

International Journal of Biological Macromolecules(2021)

引用 2|浏览1
暂无评分
摘要
Alpha-synuclein (αS) is a membrane-binding protein found predominantly in neurons and erythrocytes. The protein remains unordered in aqueous solutions but folds into an α-helical structure when bound to membranes. Besides, it gets deposited as β-sheet rich aggregates in diseases known as synucleinopathies. The native αS has been reported to be acetylated at the N-terminus. Here, we compare the interfacial properties of the N-terminal acetylated αS (Ac-αS) with non-acetylated αS (NH2-αS) at the air-water interface. Both the protein forms are highly surface-active, with surface pressure reaching up to ~30 mN/m upon compression. The pressure-area isotherms obtained from the repeated compression-expansion cycles display large hysteresis suggesting self-assembly at higher surface pressures. The expansion isotherm is characterized by a rapid decrease in surface pressure followed by a slower transition phase starting around 15–17 mN/m. These data suggest that the compressed monolayer breaks into small clusters upon expansion, followed by these clusters' loosening. The circular dichroism spectroscopic analysis of the Blodgett-deposited films suggests the protein to be in largely α-helical conformation. The linear dichroism investigations suggest the protein to be anisotropically deposited. Blodgett deposition of the Langmuir films, therefore, is a rather simple method for preparing oriented monolayers of surface-active macromolecules.
更多
查看译文
关键词
Acetylated,Alpha-synuclein,Interface,Helix,Linear dichroism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要