Leveraging Transcriptome Sequencing And Mathematical Modeling To Investigate Glioblastoma-Macrophage Interactions

Neuro-oncology(2020)

引用 0|浏览4
暂无评分
摘要
Abstract Glioblastoma (GBM) is the one of the most aggressive and common primary brain malignancies, with a poor median overall survival of less than 15 months. While the immune system is activated and brain-resident microglia and blood-derived macrophages combat the tumor, the tumor can convert some microglia and macrophages to instead exhibit an immune-suppressive phenotype. These co-opted immune cells are thereby termed ‘glioma-associated microglia and macrophages’ (GAMMs), as they allow for continued tumor growth. However, limited clinical data has been collected to understand this phenomenon. As a result, we have collected spatially-distributed image-localized biopsies from a cohort of patients and performed RNA sequencing on each sample. Correlations between normalized RNA counts of genetic markers for macrophages (i.e., CD68, CD163), tumor populations (i.e., SOX2, OLIG2), and key cell functions (i.e., KI67, CASP3) were analyzed. To further investigate the temporal effects that GAMMs have on GBM growth, we proposed the Proliferation-Invasion-Macrophage (PIM) model. This system of partial differential equations incorporates the proliferative and invasive behavior of GBM, as well as populations for both ‘healthy’ and ‘glioma-associated’ macrophages. By exploring the parameter space, we classified the various dynamics of tumor progression and how they relate to the immune response. With further insights of the interactions between GBM and macrophage populations, we can begin to parameterize the model on a patient-specific basis and provide insights to personalized immunotherapies and other novel immune-targeted treatments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要