Greater Skeletal Muscle Oxidative Capacity Is Associated With Higher Resting Metabolic Rate: Results From the BLSA

Innovation in Aging(2020)

引用 0|浏览1
暂无评分
摘要
Abstract Resting metabolic rate (RMR) tends to decline with aging. The age-trajectory of decline in RMR is similar to changes that occur in muscle mass, muscle strength and fitness. However, while the decline in these phenotypes have been related to changes of mitochondrial function and oxidative capacity, whether lower RMR is associated with poorer mitochondrial oxidative capacity is unknown. In 619 participants of the Baltimore Longitudinal Study of Aging, we analyzed the cross-sectional association between RMR (kcal/day), assessed by indirect calorimetry, and skeletal muscle maximal oxidative phosphorylation capacity, assessed as post-exercise phosphocreatine recovery time constant (tau-PCr), by phosphorous magnetic resonance spectroscopy. Linear regression models were used to evaluate the relationship between tau-PCr and RMR, adjusting for potential confounders. We found that independent of age, sex, lean body mass, muscle density and fat mass, higher RMR was significantly associated with shorter tau-PCr, indicating greater mitochondrial oxidative capacity. In conclusion, higher RMR appears to be associated with a higher mitochondrial oxidative capacity in skeletal muscle. This association may reflect a relationship between better muscle quality and greater mitochondrial health.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要