Application of aerobic kenaf granules for biological nutrient removal in a full-scale continuous flow activated sludge system.

CHEMOSPHERE(2020)

引用 5|浏览2
暂无评分
摘要
Aerobic granular sludge (AGS) is a biofilm technology that offers more treatment capacity in comparison to activated sludge. The integration of AGS into existing continuous-flow activated sludge systems is of great interest as process intensification can be achieved without the use of plastic-based biofilm carriers. Such integration should allow good separation of granules/flocs and ideally with minor retrofitting, making it an ongoing challenge. This study utilized an all-organic media carrier made of porous kenaf plant stalks with high surface areas to facilitate biofilm attachment and granule development. A 5-stage Bardenpho plant was upgraded with the addition of kenaf media and a rotary drum screen to retain the larger particles from the secondary clarifier underflow whereas flocs were selectively wasted. Startup took 5 months with a sludge volume index (SVI) reduction from >200 to 50 mL g-1. Most of the kenaf granules fell in the size range of 600-1400 μm and had a clear biofilm layer. The wet biomass density, SVI30, and SVI30/SVI5 of the kenaf granules were 1035 g L-1, 30.6 mL g-1, and 1.0, respectively, which met the standards of aerobic granules. Improved stability of biological phosphorus removal performance enabled a 25% reduction in sodium aluminate usage. Microbial activities of kenaf granules were compared with aerobic granules, showing comparable N and P removal rates and presence of ammonium-oxidizing bacteria and polyphosphate-accumulating organisms in the outer 50-60 μm layer of the granule. This work is the first viable example for integrating fully organic biofilm particles in existing continuous-flow systems.
更多
查看译文
关键词
Aerobic granular sludge, EBPR, Continuous flow, Kenaf
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要