Proposing A Combination Of Heritable Fertility Traits For Bull Selection

Journal of Animal Science(2020)

引用 0|浏览13
暂无评分
摘要
Abstract Traits such as sperm morphology and motility are routine in veterinarian evaluations of bull fertility. However, they rarely are included in livestock breeding programs, which typically use only scrotal circumference (SC) and some female traits for fertility selection. We studied 25 male fertility traits measured in two research populations of bulls (1,099 Brahman, and 1,719 Tropical Composite) and one commercial population (2,490 Santa Gertrude bulls). Measurements included standard semen evaluation (e.g. sperm motility and morphology) and SC. In the research data, we also measured sperm DNA fragmentation and sperm protamine deficiency for about 50% of the bulls. Using a mixture of genomic and pedigree analyses, we estimated heritabilities and genetic correlations for all traits, in each population. Our analyses suggest that bull fertility traits have a heritable component, which makes selective breeding possible. The phenotype variation in sperm DNA fragmentation and sperm protamine deficiency traits also have a heritable component (h2 ~ 0.05–0.22). These first estimates for heritability of sperm chromatin phenotypes require further studies, with larger datasets, to corroborate present results. In all three populations, we observed genetic correlations across traits that were favorable, but not high. For example, the percentage of normal sperm (PNS) from the sperm morphology evaluation was positively correlated with SC. In the research data, sperm DNA fragmentation was negatively correlated with PNS (r2 ~ 0.23–0.33), meaning that bulls with a higher PNS had less DNA fragmentation, being therefore more fertile according to both indicators. Given the favorable and yet not high genetic correlations between traits, it is possible to envision that sperm chromatin phenotypes might form a panel, together with PNS and SC, for a comprehensive bull fertility index. Selection indices that include fertility traits are being implemented in the dairy industry and could be recommended for beef cattle, too. An index that benefits from the favorable genetic correlations between traits that describe different aspects of bull fertility is a sensible approach to selective breeding. The clinical use of complementary indicators for male fertility is largely accepted, when deciding on bull fitness for the mating season. We propose extending this rationale to create a multi-trait index that captures genetic merit for bull fertility. In addition, we performed genome-wide association analyses in the research data and identified eight QTLs in the X chromosome. Correlations and shared SNP associations support the hypothesis that these phenotypes have the same underlying cause: abnormal spermatogenesis. In conclusion, it is possible to improve bull fertility through selective breeding, by measuring complementary fertility traits. Genomic selection for bull fertility might be more accurate if the X chromosome mutations that underlie the discovered QTL are included in the analyses. Polymorphisms associated with fertility in the bull accumulate in the X chromosome, as they do in humans and mice, thus suggesting specialization of this chromosome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要