E2pp: An Energy-Efficient Path Planning Method For Uav-Assisted Data Collection

SECURITY AND COMMUNICATION NETWORKS(2020)

引用 15|浏览14
暂无评分
摘要
Using an unmanned aerial vehicle (UAV) to collect data from wireless sensor networks deployed in the field, one of the key tasks is to plan the path for the collection so as to minimize the energy consumption of the UAV. At present, most of the existing methods generally take the shortest flight distance as the optimal objective to plan the optimal path. They simply believe that the shortest path means the least energy consumption of the UAV and ignore the fact that changing direction (heading) can also consume the UAV's energy in its flight. If the path can be planned based on the UAV's energy consumption closer to the real situation, the energy consumption of the UAV can be really reduced and its working energy efficiency can be improved. Therefore, this paper proposes a path planning method for UAV-assisted data collection, which can plan an energy-efficient flight path. Firstly, by analyzing the experiment data, we, respectively, model the relationship between the angle of heading change and the energy consumption of the UAV and the relationship between the distance of straight flight and the energy consumption of the UAV. Then, an energy consumption estimation model based on distance and the angle of heading change (ECEMBDA) is put up. By using this model, we can estimate or predict the energy consumption of a UAV to fly from one point (or node) to another (including the start point). Finally, the greedy algorithm is used to plan the path for UAV-assisted data collection according to the above estimated energy consumption. Through simulation and experiments, we compare our proposed method with the conventional method based on pure distance index and greedy algorithm. The results show that this method can obtain data collection path with lower energy consumption and smoother path trajectory, which is more suitable for actual flight.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要