A Multiscale-Based Adjustable Convolutional Neural Network for Multiple Organ Segmentation

WIRELESS COMMUNICATIONS & MOBILE COMPUTING(2020)

引用 2|浏览54
暂无评分
摘要
Accurate segmentation ofs organs-at-risk (OARs) in computed tomography (CT) is the key to planning treatment in radiation therapy (RT). Manually delineating OARs over hundreds of images of a typical CT scan can be time-consuming and error-prone. Deep convolutional neural networks with specific structures like U-Net have been proven effective for medical image segmentation. In this work, we propose an end-to-end deep neural network for multiorgan segmentation with higher accuracy and lower complexity. Compared with several state-of-the-art methods, the proposed accuracy-complexity adjustment module (ACAM) can increase segmentation accuracy and reduce the model complexity and memory usage simultaneously. An attention-based multiscale aggregation module (MAM) is also proposed for further improvement. Experiment results on chest CT datasets show that the proposed network achieves competitive Dice similarity coefficient results with fewer float-point operations (FLOPs) for multiple organs, which outperforms several state-of-the-art methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要