Influence of 3D morphology on the performance of all-polymer solar cells processed using environmentally benign nonhalogenated solvents

Nano Energy(2020)

引用 10|浏览15
暂无评分
摘要
Advancing the photovoltaic performance of all-polymer solar cells (APSCs) requires a comprehensive understanding of the dependence of the properties of photoactive blend films on the solvents used to process them. We have studied the correlation between the morphology of PTB7-Th:PNDI2OD-T2 blend films prepared using six different processing solvents. Three-dimensional (3D) transmission electron microscopy tomography (TEMT) revealed the influence of the 3D morphology of the PTB7-Th:PNDI2OD-T2 blend films on their photovoltaic performance. The high-performing toluene (TOL)- and o-xylene (XY)-processed blend films displayed power conversion efficiencies (PCEs) of ~4%, which contained nanoscopically networked fibrous PNDI2OD-T2 polymer domains. The films processed using the other solvents exhibited partly disconnected domains or unfavorable vertical phase separation. In addition, the use of N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), or N-methyl-2-pyrrolidone (NMP) as a solvent additive in XY solution resulted in a substantial improvement in the PCEs to 6.1%. This large enhancement was attributed to the formation of the better-interconnected narrower crystalline fibrillary structure of PNDI2OD-T2 chains with the aid of solvent additives, as clearly elucidated by 3D-TEMT imaging. This work highlights that APSCs processed from benign nonhalogenated solvents with appropriate additives can outperform APSCs processed from toxic halogenated solvents by affording a favorable blend morphology and that 3D TEMT imaging is a powerful and essential tool for characterizing the true morphology of photoactive layers.
更多
查看译文
关键词
Environmentally benign solvent/additive,All-polymer solar cell,Active layer morphology,TEM tomography,Molecular dynamics simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要