The Sample Complexity of Robust Covariance Testing.

COLT(2021)

引用 5|浏览44
暂无评分
摘要
We study the problem of testing the covariance matrix of a high-dimensional Gaussian in a robust setting, where the input distribution has been corrupted in Huber's contamination model. Specifically, we are given i.i.d. samples from a distribution of the form $Z = (1-\epsilon) X + \epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $\mathcal{N}(0, \Sigma)$, $B$ is a fixed but unknown noise distribution, and $\epsilon>0$ is an arbitrarily small constant representing the proportion of contamination. We want to distinguish between the cases that $\Sigma$ is the identity matrix versus $\gamma$-far from the identity in Frobenius norm. In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples. Moreover, this sample upper bound was shown to be best possible, within constant factors. Our main result is that the sample complexity of covariance testing dramatically increases in the contaminated setting. In particular, we prove a sample complexity lower bound of $\Omega(d^2)$ for $\epsilon$ an arbitrarily small constant and $\gamma = 1/2$. This lower bound is best possible, as $O(d^2)$ samples suffice to even robustly {\em learn} the covariance. The conceptual implication of our result is that, for the natural setting we consider, robust hypothesis testing is at least as hard as robust estimation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要