Universal quantum modifications to general relativistic time dilation in delocalised clocks

QUANTUM(2020)

引用 26|浏览1
暂无评分
摘要
The theory of relativity associates a proper time with each moving object via its world line. In quantum theory however, such well-defined trajectories are forbidden. After introducing a general characterisation of quantum clocks, we demonstrate that, in the weak-field, low-velocity limit, all "good" quantum clocks experience time dilation as dictated by general relativity when their state of motion is classical (i.e. Gaussian). For nonclassical states of motion, on the other hand, we find that quantum interference effects may give rise to a significant discrepancy between the proper time and the time measured by the clock. The universality of this discrepancy implies that it is not simply a systematic error, but rather a quantum modification to the proper time itself. We also show how the clock's delocalisation leads to a larger uncertainty in the time it measures - a consequence of the unavoidable entanglement between the clock time and its center-of-mass degrees of freedom. We demonstrate how this lost precision can be recovered by performing a measurement of the clock's state of motion alongside its time reading.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要