Spatial characteristics of a zero-pressure-gradient turbulent boundary layer in the presence of free-stream turbulence

PHYSICAL REVIEW FLUIDS(2019)

引用 5|浏览0
暂无评分
摘要
Particle image velocimetry (PIV) measurements are performed to examine the structural organization inside a turbulent boundary layer under the influence of free-stream turbulence (FST). In particular, streamwise-wall-normal plane PIV measurements are presented for two cases at two different turbulent intensity levels (about 13% and 8%). The free-stream turbulence is generated using an active grid in a wind tunnel. The statistical information of the flow regarding the wall-normal velocity and Reynolds shear stress are presented. The effect of increasing the turbulence level in the free stream for these flows has been found to have similarities with increasing Reynolds number for high-Reynolds-number canonical flows. Quadrant analysis is performed to determine the contributions of different Reynolds-stress-producing events. In this regard, the distribution of momentum transport events shows some similarity with channel flows, which can be justified by comparison of similar intermittency characteristics of both flows. In addition, the coherent structures found inside the boundary layer have inclined features that are consistent with the previous studies for canonical flows. The fact that the external disturbance, such as FST in this study, does not alter the organization of the structures inside the boundary layer supports the growing evidence for a universal structure for wall-bounded flows.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要