Stochastic optimization models for location and inventory prepositioning of disaster relief supplies

arxiv(2022)

引用 8|浏览0
暂无评分
摘要
We consider the problem of preparing for a disaster season by determining where to open warehouses and how much relief item inventory to preposition in each. Then, after each disaster, prepositioned items are distributed to demand nodes during the post-disaster phase, and additional items are procured and distributed as needed. There is often uncertainty in the disaster level, affected areas’ locations, the demand for relief items, the usable fraction of prepositioned items post-disaster, procurement quantity, and arc capacity. To address uncertainty, we propose and analyze two-stage stochastic programming (SP) and distributionally robust optimization (DRO) models, assuming known and unknown (ambiguous) uncertainty distributions. The first and second stages correspond to pre- and post-disaster phases, respectively. We also propose a model that minimizes the trade-off between considering distributional ambiguity and following distributional belief. We obtain near-optimal solutions of our SP model using sample average approximation and propose a computationally efficient decomposition algorithm to solve our DRO models. We conduct extensive experiments using a hurricane season and an earthquake as case studies to investigate these approaches computational and operational performance.
更多
查看译文
关键词
Uncertainty modeling,Facility location,Inventory prepositioning,Humanitarian logistics,Stochastic optimization,Mixed-integer programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要