Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100-xMox High-Entropy Alloys.

Entropy (Basel, Switzerland)(2018)

引用 0|浏览0
暂无评分
摘要
The present work investigates the influence of micro-alloyed Mo on the corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys. All of the (CoCrFeNi)100-xMox alloys exhibit a single face-centered cubic (FCC) solid solution. However, the (CoCrFeNi)97Mo3 alloy exhibits an ordered sigma (σ) phase enriched in Cr and Mo. With the increase of x (the Mo content) from 1 to 3, the hardness of the (CoCrFeNi)100-xMox alloys increases from 124.8 to 133.6 Vickers hardness (HV), and the compressive yield strength increases from 113.6 MPa to 141.1 MPa, without fracture under about a 60% compressive strain. The potentiodynamic polarization curve in a 3.5% NaCl solution indicates that the addition of Mo has a beneficial effect on the corrosion resistance to some certain extent, opposed to the σ phase. Furthermore, the alloys tend to form a passivation film in the 0.5 M H2SO4 solution in order to inhibit the progress of the corrosion reaction as the Mo content increases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要